Section 5.1

Math 231

Hope College

- Let V be a vector space and f : V → V a linear transformation. A nonzero vector x ∈ V such that f(x) = λx for some scalar λ is called an eigenvector of f. The scalar λ is called the eigenvalue of f associated to the eigenvector x.
- We will see several examples of eigenvalues and eigenvectors in class.

• Given an eigenvalue λ of f, we define

$$E_{\lambda} = \{ \mathbf{x} \in V \, | \, f(\mathbf{x}) = \lambda \mathbf{x} \}.$$

The set E_{λ} is called the **eigenspace** associated to the eigenvalue λ .

Theorem 5.7: For every eigenvalue λ of f, the set E_λ is a subspace of V.

Linear Independence of Eigenvectors

- **Theorem 5.5:** Let $f: V \rightarrow V$ be a linear transformation on a vector space V.
 - Let S = {x₁, x₂,..., x_k} be a set of eigenvectors of *f* with associated eigenvalues {λ₁, λ₂,..., λ_k}, respectively. If the numbers λ_j are all distinct, then S is a linearly independent set.
 - 2 If dim V = n, then f has at most n distinct eigenvalues.
- A consequence of this theorem is that if dim V = n and f has n distinct eigenvalues, the set {x₁, x₂,..., x_n} of eigenvectors associated to these eigenvalues will be a basis of V.

- Given a square matrix A, we can find the eigenvalues of the matrix A, that is, the eigenvalues of the linear transformation f : ℝⁿ → ℝⁿ defined by f(**x**) = A**x** for all **x** ∈ ℝⁿ.
- We find the eigenvalues of A by solving $p_A(\lambda) = 0$, where $p_A(\lambda)$ is the **characteristic polynomial** of A:

$$p_A(\lambda) = \det(A - \lambda I_n).$$

If V is a finite dimensional vector space and f : V → V is a linear transformation, then the eigenvalues of f can be found using the matrix [f]^B_B for any basis B of V.